

A Layman’s Guide to Cryptography

SELF 2024
Charlotte, NC
2024-06-08

ZMN XMRE IJENTFID

What this talk isn’t about
● Cryptocurrency/memecoins
● Implement Rijndael
● Complicated math
● How to deploy a certificate authority

Actually in this talk
● What is a cipher, key, mode, hash?
● Extreme oversimplifications
● How does Linux FDE work?
● Why RSA isn’t named after its creator
● How can I use my bank’s website over WiFi?
● Am I getting pwned by Quantum computers?

The Speaker
● Cameron Conn
● Dev/Hacker/Linux User for ~15 years
● Sr. Software Engineer at $DAYJOB
● I have implemented everything in this talk

Crypto-what?
● What

– Securely communicate around adversaries

● Why
– Keep a secret
– To prove authenticity
– To uniquely identify something

Why it Works
● It’s hard to guess random numbers
● AES

– 128 bits: 3.26 Bn Bn Years
– 256 bits: 5.54 x 1029 Bn Bn Bn Yrs

● RSA
– 2048 bits: 2.57 Mn Bn Yrs
– 4096 bits: 152 Bn Bn Bn Yrs

● Age of the universe: 13.7 Bn Yrs

Symmetric Ciphers
● Have a plaintext
message

● Encipher with a key to
get ciphertext

● Decipher the with the key
to get back plaintext

One Time Pad
● Theoretically Unbreakable
● Encrypt message with random pad
● Quantum secure

Example: One Time Pad

Issues: One Time Pad
● length(Key) = length(Message)

– 1 GB Data + 1 GB Key = 2 GB Stored

● Re-using a key compromises secrecy
– Allows reconstruction of message

– Examples
● Repeating key XOR
● Venona Spy Cables

“Modern” Symmetric Ciphers
● Want to re-use a small key

– Re-use is nice
– But not too small to guess (≤ 8 bytes)

● Make ciphertext indistinguishable from a random
message

● Types
– Block
– Stream

Block Ciphers
● Symmetric Cipher
● Fixed size Key

– Generated with a CSPRNG (not rand(3))

● Fixed size Message, the Block
● e.g. AES, Twofish

Example: Block Ciphers

Issues: Block Ciphers
● Can’t handles message not divisible into blocks

– Need Padding to a full block

● Block Ciphers only handle one block
● Need a special Mode of operation for > 1 block

ECB: Electronic Codebook

ECB: Extra Cryptographically Broken
● Don’t use ECB
● You can “decrypt” ECB just by looking at it:

Modes
● The “simple” modes have issues (ECB, CBC)
● Use other ones for speed + security

– CCM
– GCM
– CTR
– XTS

Stream Ciphers
● Like OTP

– Difference: Pad with a Keystream derived from a key

– Difference: Only as secure as Keystream algorithm

● Flexible
– No padding

– No mode of operation

● Examples: ChaCha/Salsa20, HC-256, MICKEY

So Far
● Symmetric Ciphers
● Modes of Operation
● Block vs Stream Ciphers
● Things that are intuitively OK break security

Hashing
● A hash function is a one-way function that

changes an arbitrary length input into a
(usually) fixed length output (the hash or
digest)

● We care about cryptographic hashes

Cryptographic Hashes
● It should be difficult to find the inputs when you only

know the output

● It should be difficult to find two inputs with the same
output (a collision)

● Made-up categories:
– Fast Hashes

– Password Hashes

“Fast” Hashes
● Variable length of data goes in and a fixed-

length digest comes out.
● e.g. SHA family, Blake3, MD5 (bad)

cam@BigBox:~/Documents/SELF-2024$ sha256sum Mona_Lisa.jpg
9f7c25a9260e754cfbffeeaf3a0add0f6e650697b91eb27285f267d00028f77f Mona_Lisa.jpg

Password Hashes
● Called a Key Derivation Function (KDF)

– Used to avoid storing user passwords on websites

– Or user-defined passphrases (disk encryption)

● Designed to hamper brute force attacks
– Accept a per-hash salt

– Usually accept a difficulty

● e.g. Argon2, scrypt, bcrypt

Aside: Full Disk Encryption (FDE)

Aside: dm-crypt+LUKS
● UEFI/BIOS loads Linux kernel
● kernel calls cryptsetup(8)

– Asks for password
– Checks password hash against LUKS header

● Called Key Recovery

– If match, hand over key to dm-crypt

● Then keep booting Linux

Now we can keep a message secret.

How do we prove the message wasn’t modified?

Message Authentication Codes
● MACs are like a

checksum
● Use a secret to

authenticate a
message.
– Difficult to forge
– Useless without the

secret

Summary: Symmetric Crypto
● Ciphers: Keep a secret
● Hash: Identify something without storing it
● MAC: Verify authenticity

And now for something completely different

Asymmetric Crypto
● Generate a keypair of a public and private key
● Give out public, keep private secret
● You can now:

– Sign
– Encrypt

Asymmetric Crypto (cont)
● Things you can do

– De/Encrypt messages
– Sign/Verify messages
– Establish a shared secret between two parties
– Delegate authority (e.g. Web Certificates)
– Use your bank’s website

Asymmetric Systems
● Two common ones currently

– RSA
– Elliptic Curves (ECC)

● Post-Quantum coming down the pipe:
– Kyber (KEM)
– Dilithium (Signatures)

RSA
● Independently invented in the UK (1973) and USA (1977)
● Pick two very large secret large prime numbers (p & q)
● Calculate public key: N = p * q
● RSA-2048

– len(p) == len(q) == 1024 bits
– N = p*q
– len(N) == 2048 bits
– 256 bytes

Elliptic Curve Cryptography (ECC)
● ECC uses point on a curve instead of scalar #s
● Split into signing + encryption algorithms
● Smaller keys
● Not actually a single system

– You get to pick a curve as well
– Many of these

Asymmetric Signing

Now what?

I can crypto now, right?

Internal Threats: Don’t FSCK it up

● Use a key after it “wears” out

● You use the wrong mode/padding

● You don’t verify the recipient’s key is well-formed

● ...And a whole lot more!

People don’t write crypto themselves because it’s
easy to mess up

External Threats: Don’t Get Pwned
● Side Channels

– Power

– Timing

– Acoustic

● Software vulnerabilities

● Gov-mandated backdoor

● A quantum computer breaks funny math

Pwned by Quantum Computers?
● Quantum Computing (QC) kind of breaks cryptography

● Asymmetric
– RSA: Broken

– ECC: Even more broken

● Symmetric + Hashes
– Mostly OK

– Grover’s Algorithm: ½’s key sizes

Post Quantum Cryptography (PQC)
● PQC is designed to be QC-secure

● Downsides
– Immature algorithms may have flaws

● e.g. SIKE, Rainbow

– Way larger keys

– Way slower than contemporary crypto

● Getting standards now

QC Recommendations
● Biggest threat is Harvest now, decrypt later

● Don’t Panic
– Move to the exists in an orderly fashion

– Start migrating to PQC immediately

– Consider hybrid constructions

● Stay up to date
– Keep software up to date for when support is added

– Move to vendors that support PQC if yours don’t

Other Recommendations
● I want to wrap an existing protocol

– OpenSSL
– s2n

● I want to write write a new protocol
– See above, or...
– libsodium (or NaCl)

Recap
● Basics of common crypto
● Pitfalls of rolling your own

– Throw it away and use someone else’s
– Unless you have a degree in math

● The quantum threat

Would you like to know more?
● Cryptopals

● Books

– Real World Cryptography by Wong

– Serious Cryptography by Aumasson
● 2nd edition scheduled for August 2024

– Handbook of Applied Cryptography by Menezes,
Oorschot, & Vanstone

– Read the spec (AES/Rijndael, SHA, Curve25519,
ChaCha20)

● Roll your own crypto

– Not Safe for Sanity

Slides:
https://www.camconn.cc/SELF-2024
or scan:

http://www.camconn.cc/SELF-2024

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

