A Layman’s Guide to Cryptography

SELF 2024
Charlotte, NC
2024-06-08

ZMN XMRE IJENTFID

What this talk iIsn’t about

Cryptocurrency/memecoins
Implement Rijndael

Complicated math

How to deploy a certificate authority

Actually In this talk

What is a cipher, key, mode, hash?

Extreme oversimplifications

How does Linux FDE work?

Why RSA isn’'t named after its creator

How can | use my bank’s website over WiFi?
Am | getting pwned by Quantum computers?

The Speaker

Cameron Conn
Dev/Hacker/Linux User for ~15 years
Sr. Software Engineer at $DAYJOB

| have implemented everything in this talk

Crypto-what?

* What

— Securely communicate around adversaries
* Why

- Keep a secret

- To prove authenticity
— To uniquely identify something

Why it Works

It's hard to guess random numbers

AES
— 128 bits: 3.26 Bn Bn Years
— 256 bits: 5.54 x 10 Bn Bn Bn Yrs

RSA
— 2048 bits: 2.57 Mn Bn Yrs
— 4096 bits: 152 Bn Bn Bn Yrs

Age of the universe: 13.7 Bn Yrs

Symmetric Ciphers

* Have a plaintext
message

* Encipher with a key to
get ciphertext

* Decipher the with the key
to get back plaintext

Plaintext .

Key EncryptQ ’ Key DecryptQ l

\

Ciphertext l

‘ Ciphertext l

' Plodn‘t@(t]

One Time Pad

* Theoretically Unbreakable

* Encrypt message with random pad

» Quantum secure [HMM} [m{,hem}

Pacl PadQ J Pocdl Unpad() }

{

[Cipher’tex’t] [Plaintext)

Example: One Time Pad

GLY4E M Zon

e_moxrkab[e_

B?r'ol, the 30[\5mu-
Norwegian *S?F‘!)’t.f;.,
Blue. "+3o)[c:gr\’

\
6LY9E HZon Remorkable
301'-\Smu- bird, the
«STFt S,

Horwe,s,ian

Blue.

o 30)[(‘.3[?

Issues: One Time Pad

* length(Key) = length(Message)
- 1 GB Data + 1 GB Key = 2 GB Stored
* Re-using a key compromises secrecy

— Allows reconstruction of message

- Examples
* Repeating key XOR
* Venona Spy Cables

“Modern” Symmetric Ciphers

* Want to re-use a small key
~ Re-use is nice
— But not too small to guess (< 8 bytes)

* Make ciphertext indistinguishable from a random
message

° TypeS
— Block
— Stream

Block Ciphers

Symmetric Cipher

Fixed size Key
— Generated with a CSPRNG (not rand(3))

Fixed size Message, the Block
e.g. AES, Twofish

Example: Block Ciphers

Message: Hello SELF 2024!

Key: KnightsWhoSayNi!
Hie|l|l >>j:*}
0 S|E \i q M|18
LIF] |2 05/0|s| &
0124 ! Sul Al =P1
Rnlq Rniq
hlt|s|W AES-12¥ hitlslw AES-12%
hlo|S|a Encrypet hlolsl a Decrypt
yNI1| ! VLI
» I % } Hle|1]1
VCM18 o S| E
@5955 LIE 3 16BYte‘S
suiA|l=p1 o21dl1

Issues: Block Ciphers

* Can’'t handles message not divisible into blocks
- Need Padding to a full block

* Block Ciphers only handle one block
* Need a special Mode of operation for > 1 block

ECB: Electronic Codebook

MeSSagge,

Spli‘t
—_— =

K ey

co c1

ca

c3

Combine

MO

M1

M2 | M3

M

M5

M6 | M?

L &5

cé

ct

Ciphef"te)(t

Block

ECB: Extra Cryptographically Broken

* Don't use ECB
* You can “decrypt’” ECB just by looking at It:

Modes

* The “simple” modes have issues (ECB, CBC)

* Use other ones for speed + security
- CCM
- GCM
- CTR
- XTS

Stream Ciphers

+ Like OTP

- Difference: Pad with a Keystream derived from a key
— Difference: Only as secure as Keystream algorithm

* Flexible
— No padding
— No mode of operation

 Examples: ChaCha/Salsa20, HC-256, MICKEY

Salsa20 Stream Cipher

Nonce Counter = 0 Counter = 1 Counter = N
V
Key Round() Key Round() Key Round()
Ke_t/
K ey Ke,t/
Stream
Streom Stream
Block #0 Block #1 Block #W

vV

64 Byte, Keystreom

So Far

Symmetric Ciphers
Modes of Operation
Block vs Stream Ciphers

Things that are intuitively OK break security

Hashing

* A hash function is a one-way function that
changes an arbitrary length input into a
(usually) fixed length output (the hash or
digest)

* We care about cryptographic hashes

Cryptographic Hashes

* It should be difficult to find the inputs when you only
Know the output

* It should be difficult to find two inputs with the same

output (a collision) I — SHAttered

irst concrete collision attack against SHA-1 The first concrete collision attack against SHA-1
http hattered.io

* Made-up categories: e
- Fast Hashes

- Password Hashes

38762cf7f55934b34d179ae6a4c80cadccbb7f0a 1.pdf
38762cf7f55934b34d179ae6a4c80cadccbb7f0a 2.pdf

Pbb787a73e37352192383abe7e2902936d1059ad9f1ba6daaa9cie58ee6970d0 1.pdf
4488775d29bdef7993367d541064dbdda50d383f89f0aal3a6ff2e0894ba5ff 2.pdf

“Fast” Hashes

* Variable length of data goes in and a fixed-
length digest comes out.

* e.g. SHA family, Blake3, MD5 (bad)

cam@BigBox:~/Documents/SELF-2024% sha256sum Mona_Lisa.jpg
9f7c25a9260e754cfbffeeaf3a0addof6e650697h91eb27285f267d00028f77f Mona_Lisa.jpg

Password Hashes

* Called a Key Derivation Function (KDF)
- Used to avoid storing user passwords on websites
— Or user-defined passphrases (disk encryption)

* Designed to hamper brute force attacks
— Accept a per-hash salt
— Usually accept a difficulty

* e.g. Argon2, scrypt, bcrypt

LPo\ssworol][Salt]

[ety

Password
Hosh

Digest

Be f‘yp‘t Hash Format

Hash
Alaof‘i’thm

$

PST9/PgBKqquzi.Ss7TKIUgO2t0jwMUW

R9h/cIPz0Ogi.URNNX3kh20
Salt
Dipﬁcul‘ty: (Base64)

Iterations or

Cost

T

Hoash Diges't
Base 64)

Aside: Full Disk Encryption (FDE)

Aside: dm-crypt+LUKS

e UEFI/BIOS loads Linux kernel

e kernel calls cryptsetup(8)

- Asks for password

— Checks password hash against LUKS header
* Called Key Recovery

- |f match, hand over key to dm-crypt

* Then keep booting Linux

LUKS Heoder Lau/ou‘t

LUKS Meta Cipher Dota Ptr Moaster KeL/ Hash Info VUID Encﬁfp‘te,d Ke_t/ Slots
e e Ak e R e
Master Key Hash Info ; KQYS[O-\:S
Active? Dipﬁcul‘ty Salt PtE Stripes

[Passmrd/zeyhleJ L Salt J

L

Password Hash
(PBKDF2)

{

LUKS K ey Re,cove_m/

Candidate K ey

LUKS Master Salt

|

LUKS Pass Dis,e_s't

Password Hash

Candidate Hash

Encrypted Key okfficulty
v
'\
LUKS
DeeryptQ
_J
v
Selit Key LUKS Header

| !

LUKS
Generate Candidate

J

Candidate K ey

l

Yes

l

Use
candidate
to de,cryp‘t

dhisk

LUKS Master Hash

l

No

|

[

Try next or
3e‘t new PaSSword

)

Now we can keep a message secret.

How do we prove the message wasn’'t modified?

Message Authentication Codes

* MACs are like a
checksum

* Use a secret to
authenticate a
message.

— Difficult to forge

— Useless without the
secret

Secret

Message |

/

P

RS

| Generat e,"l'as()

Summary: Symmetric Crypto

* Ciphers: Keep a secret

* Hash: Identify something without storing It
 MAC: Verify authenticity

And now for something completely different

Asymmetric Crypto

* Generate a keypair of a public and private key
* Glve out public, keep private secret

* YOU cCan NOWw:
- Sign
- Encrypt

Asymmetric Crypto (cont)

* Things you can do
- De/Encrypt messages
- Sign/Verify messages
- Establish a shared secret between two parties
- Delegate authority (e.g. Web Certificates)
- Use your bank’s website

Asymmetric Systems

 Two common ones currently
- RSA
— Elliptic Curves (ECC)

* Post-Quantum coming down the pipe:
- Kyber (KEM)
— Dilithium (Signatures)

RSA

Independently invented in the UK (1973) and USA (1977)
Pick two very large secret large prime numbers (p & Q)
Calculate public key: N=p * g

RSA-2048

~ len(p) == len(q) == 1024 bits

- N=pH

— len(N) == 2048 bits

— 256 bytes

Elliptic Curve Cryptography (ECC)
« ECC uses point on a curve instead of scalar #s
e Split into signing + encryption algorithms
* Smaller keys I e

* Not actually a single system
- You get to pick a curve as well
- Many of these

Asymmetric Signing

[Message J { Message J [Sigm\ ‘tur%

y
& 2 G 2)

Private 513n Public | Vef‘ipl/

& 5
\

[Signod: ur‘(ﬂ

You

Opey\ bonk

End Session

How To Se,cur‘e,lt/ Use Your Bank (Simph{-\.ed)

—Bo\nk.e)ramp le.com=>

Check certificate

———Close Tab—>

Start Session———=
Certificate +
DH + Signa’tuf‘e

P

_Re,que,s't DH%

P

—_—GET "/ ré
l<=—Content of b Je——
L Usermame + Password—>

é-f_osfin Good + Redirect—

P

—

Both: Caleulate shared
DH secret + session keys

CUne_ncr‘lfp'te,o(J
[Encryp’teol ("I'LS)]

Now what?

| can crypto now, right?

Internal Threats: Don’'t FSCK it up

People don’t write crypto themselves because it's
easy to mess up

 Use a key after it “wears” out
* You use the wrong mode/padding
* You don't verify the recipient’s key is well-formed

e ...And a whole lot more!

External Threats: Don’t Get Pwned

Side Channels
- Power

- Timing

- Acoustic

Software vulnerabilities

Gov-mandated backdoor

Pwned by Quantum Computers?

* Quantum Computing (QC) kind of breaks cryptography

* Asymmetric
- RSA: Broken
- ECC: Even more broken

* Symmetric + Hashes
— Mostly OK
— Grover’s Algorithm: %%’s key sizes

Post Quantum Cryptography (PQC)

* PQC Is designed to be QC-secure
* Downsides

- Immature algorithms may have flaws
* e.g. SIKE, Rainbow

- Way larger keys
- Way slower than contemporary crypto

e Getting standards now

QC Recommendations

* Biggest threat is Harvest now, decrypt later

 Don’t Panic
— Move to the exists in an orderly fashion
— Start migrating to PQC immediately

— Consider hybrid constructions

e Stay up to date
- Keep software up to date for when support is added

— Move to vendors that support PQC if yours don’t

Other Recommendations

* | want to wrap an existing protocol
- OpenSSL
- S2n

* | want to write write a new protocol

- See above, or...
- libsodium (or NacCl)

Recap

« Basics of common crypto

 Pitfalls of rolling your own
- Throw it away and use someone else’s
- Unless you have a degree in math

* The quantum threat

Would you like to know more?

* Cryptopals Slides:
https://www.camconn.cc/SELF-2024
* Books or scan:

- Real World Cryptography by Wong

- Serious Cryptography by Aumasson
« 2" edition scheduled for August 2024

- Handbook of Applied Cryptography by Menezes,
Oorschot, & Vanstone

- Read the spec (AES/Rijndael, SHA, Curve25519,
ChaCha20)

* Roll your own crypto

- Not Safe for Sanity

http://www.camconn.cc/SELF-2024

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

