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What this talk iIsn’t about

Cryptocurrency/memecoins
Implement Rijndael

Complicated math

How to deploy a certificate authority



Actually In this talk

What is a cipher, key, mode, hash?

Extreme oversimplifications

How does Linux FDE work?

Why RSA isn’'t named after its creator

How can | use my bank’s website over WiFi?
Am | getting pwned by Quantum computers?



The Speaker

Cameron Conn
Dev/Hacker/Linux User for ~15 years
Sr. Software Engineer at $DAYJOB

| have implemented everything in this talk



Crypto-what?

* What

— Securely communicate around adversaries
* Why

- Keep a secret

- To prove authenticity
— To uniquely identify something



Why it Works

It's hard to guess random numbers

AES
— 128 bits: 3.26 Bn Bn Years
— 256 bits: 5.54 x 10 Bn Bn Bn Yrs

RSA
— 2048 bits: 2.57 Mn Bn Yrs
— 4096 bits: 152 Bn Bn Bn Yrs

Age of the universe: 13.7 Bn Yrs



Symmetric Ciphers

* Have a plaintext
message

* Encipher with a key to
get ciphertext

* Decipher the with the key
to get back plaintext
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One Time Pad

* Theoretically Unbreakable

* Encrypt message with random pad

» Quantum secure [HMM} [m{,hem}
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Example: One Time Pad
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Issues: One Time Pad

* length(Key) = length(Message)
- 1 GB Data + 1 GB Key = 2 GB Stored
* Re-using a key compromises secrecy

— Allows reconstruction of message

- Examples
* Repeating key XOR
* Venona Spy Cables



“Modern” Symmetric Ciphers

* Want to re-use a small key
~ Re-use is nice
— But not too small to guess (< 8 bytes)

* Make ciphertext indistinguishable from a random
message

° TypeS
— Block
— Stream



Block Ciphers

Symmetric Cipher

Fixed size Key
— Generated with a CSPRNG (not rand(3))

Fixed size Message, the Block
e.g. AES, Twofish



Example: Block Ciphers

Message: Hello SELF 2024!
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Issues: Block Ciphers

* Can’'t handles message not divisible into blocks
- Need Padding to a full block

* Block Ciphers only handle one block
* Need a special Mode of operation for > 1 block



ECB: Electronic Codebook
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ECB: Extra Cryptographically Broken

* Don't use ECB
* You can “decrypt’” ECB just by looking at It:




Modes

* The “simple” modes have issues (ECB, CBC)

* Use other ones for speed + security
- CCM
- GCM
- CTR
- XTS



Stream Ciphers

+ Like OTP

- Difference: Pad with a Keystream derived from a key
— Difference: Only as secure as Keystream algorithm

* Flexible
— No padding
— No mode of operation

 Examples: ChaCha/Salsa20, HC-256, MICKEY



Salsa20 Stream Cipher
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So Far

Symmetric Ciphers
Modes of Operation
Block vs Stream Ciphers

Things that are intuitively OK break security



Hashing

* A hash function is a one-way function that
changes an arbitrary length input into a
(usually) fixed length output (the hash or
digest)

* We care about cryptographic hashes



Cryptographic Hashes

* It should be difficult to find the inputs when you only
Know the output

* It should be difficult to find two inputs with the same

output (a collision) I — SHAttered

irst concrete collision attack against SHA-1 The first concrete collision attack against SHA-1
http hattered.io

* Made-up categories: e
- Fast Hashes

- Password Hashes

38762cf7f55934b34d179ae6a4c80cadccbb7f0a 1.pdf
38762cf7f55934b34d179ae6a4c80cadccbb7f0a 2.pdf

Pbb787a73e37352192383abe7e2902936d1059ad9f1ba6daaa9cie58ee6970d0 1.pdf
4488775d29bdef7993367d541064dbdda50d383f89f0aal3a6ff2e0894ba5ff 2.pdf




“Fast” Hashes

* Variable length of data goes in and a fixed-
length digest comes out.

* e.g. SHA family, Blake3, MD5 (bad)

cam@BigBox:~/Documents/SELF-2024% sha256sum Mona_Lisa.jpg
9f7c25a9260e754cfbffeeaf3a0addof6e650697h91eb27285f267d00028f77f Mona_Lisa.jpg




Password Hashes

* Called a Key Derivation Function (KDF)
- Used to avoid storing user passwords on websites
— Or user-defined passphrases (disk encryption)

* Designed to hamper brute force attacks
— Accept a per-hash salt
— Usually accept a difficulty

* e.g. Argon2, scrypt, bcrypt
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Aside: Full Disk Encryption (FDE)



Aside: dm-crypt+LUKS

e UEFI/BIOS loads Linux kernel

e kernel calls cryptsetup(8)

- Asks for password

— Checks password hash against LUKS header
* Called Key Recovery

- |f match, hand over key to dm-crypt

* Then keep booting Linux
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Now we can keep a message secret.

How do we prove the message wasn’'t modified?



Message Authentication Codes

* MACs are like a
checksum

* Use a secret to
authenticate a
message.

— Difficult to forge

— Useless without the
secret
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Summary: Symmetric Crypto

* Ciphers: Keep a secret

* Hash: Identify something without storing It
 MAC: Verify authenticity

And now for something completely different



Asymmetric Crypto

* Generate a keypair of a public and private key
* Glve out public, keep private secret

* YOU cCan NOWw:
- Sign
- Encrypt



Asymmetric Crypto (cont)

* Things you can do
- De/Encrypt messages
- Sign/Verify messages
- Establish a shared secret between two parties
- Delegate authority (e.g. Web Certificates)
- Use your bank’s website



Asymmetric Systems

 Two common ones currently
- RSA
— Elliptic Curves (ECC)

* Post-Quantum coming down the pipe:
- Kyber (KEM)
— Dilithium (Signatures)



RSA

Independently invented in the UK (1973) and USA (1977)
Pick two very large secret large prime numbers (p & Q)
Calculate public key: N=p * g

RSA-2048

~ len(p) == len(q) == 1024 bits

- N=pH

— len(N) == 2048 bits

— 256 bytes



Elliptic Curve Cryptography (ECC)
« ECC uses point on a curve instead of scalar #s
e Split into signing + encryption algorithms
* Smaller keys I e

* Not actually a single system
- You get to pick a curve as well
- Many of these




Asymmetric Signing
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Now what?

| can crypto now, right?



Internal Threats: Don’'t FSCK it up

People don’t write crypto themselves because it's
easy to mess up

 Use a key after it “wears” out
* You use the wrong mode/padding
* You don't verify the recipient’s key is well-formed

e ...And a whole lot more!



External Threats: Don’t Get Pwned

Side Channels
- Power

- Timing

- Acoustic

Software vulnerabilities

Gov-mandated backdoor




Pwned by Quantum Computers?

* Quantum Computing (QC) kind of breaks cryptography

* Asymmetric
- RSA: Broken
- ECC: Even more broken

* Symmetric + Hashes
— Mostly OK
— Grover’s Algorithm: %%’s key sizes



Post Quantum Cryptography (PQC)

* PQC Is designed to be QC-secure
* Downsides

- Immature algorithms may have flaws
* e.g. SIKE, Rainbow

- Way larger keys
- Way slower than contemporary crypto

e Getting standards now



QC Recommendations

* Biggest threat is Harvest now, decrypt later

 Don’t Panic
— Move to the exists in an orderly fashion
— Start migrating to PQC immediately

— Consider hybrid constructions

e Stay up to date
- Keep software up to date for when support is added

— Move to vendors that support PQC if yours don’t



Other Recommendations

* | want to wrap an existing protocol
- OpenSSL
- S2n

* | want to write write a new protocol

- See above, or...
- libsodium (or NacCl)



Recap

« Basics of common crypto

 Pitfalls of rolling your own
- Throw it away and use someone else’s
- Unless you have a degree in math

* The quantum threat



Would you like to know more?

* Cryptopals Slides:
https://www.camconn.cc/SELF-2024
* Books or scan:

- Real World Cryptography by Wong

- Serious Cryptography by Aumasson
« 2" edition scheduled for August 2024

- Handbook of Applied Cryptography by Menezes,
Oorschot, & Vanstone

- Read the spec (AES/Rijndael, SHA, Curve25519,
ChaCha20)

* Roll your own crypto

- Not Safe for Sanity


http://www.camconn.cc/SELF-2024
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