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What this talk isn’t about
● Cryptocurrency/memecoins
● Implement Rijndael
● Complicated math
● How to deploy a certificate authority



  

Actually in this talk
● What is a cipher, key, mode, hash?
● Extreme oversimplifications
● How does Linux FDE work?
● Why RSA isn’t named after its creator
● How can I use my bank’s website over WiFi?
● Am I getting pwned by Quantum computers?



  

The Speaker
● Cameron Conn
● Dev/Hacker/Linux User for ~15 years
● Sr. Software Engineer at $DAYJOB
● I have implemented everything in this talk



  

Crypto-what?
● What

– Securely communicate around adversaries

● Why
– Keep a secret
– To prove authenticity
– To uniquely identify something



  

Why it Works
● It’s hard to guess random numbers
● AES

– 128 bits: 3.26 Bn Bn Years
– 256 bits: 5.54 x 1029 Bn Bn Bn Yrs

● RSA
– 2048 bits: 2.57 Mn Bn Yrs
– 4096 bits: 152 Bn Bn Bn Yrs

● Age of the universe: 13.7 Bn Yrs



  

Symmetric Ciphers
● Have a plaintext 
message

● Encipher with a key to 
get ciphertext

● Decipher the with the key 
to get back plaintext



  

One Time Pad
● Theoretically Unbreakable
● Encrypt message with random pad
● Quantum secure



  

Example: One Time Pad



  

Issues: One Time Pad
● length(Key) = length(Message)

– 1 GB Data + 1 GB Key = 2 GB Stored

● Re-using a key compromises secrecy
– Allows reconstruction of message

– Examples
● Repeating key XOR
● Venona Spy Cables



  

“Modern” Symmetric Ciphers
● Want to re-use a small key

– Re-use is nice
– But not too small to guess (≤ 8 bytes)

● Make ciphertext indistinguishable from a random 
message

● Types
– Block
– Stream



  

Block Ciphers
● Symmetric Cipher
● Fixed size Key

– Generated with a CSPRNG (not rand(3))

● Fixed size Message, the Block
● e.g. AES, Twofish 



  

Example: Block Ciphers



  

Issues: Block Ciphers
● Can’t handles message not divisible into blocks

– Need Padding to a full block

● Block Ciphers only handle one block
● Need a special Mode of operation for > 1 block



  

ECB: Electronic Codebook



  

ECB: Extra Cryptographically Broken
● Don’t use ECB
● You can “decrypt” ECB just by looking at it:



  

Modes
● The “simple” modes have issues (ECB, CBC)
● Use other ones for speed + security

– CCM
– GCM
– CTR
– XTS



  

Stream Ciphers
● Like OTP

– Difference: Pad with a Keystream derived from a key

– Difference: Only as secure as Keystream algorithm

● Flexible
– No padding

– No mode of operation

● Examples: ChaCha/Salsa20, HC-256, MICKEY



  



So Far
● Symmetric Ciphers
● Modes of Operation
● Block vs Stream Ciphers
● Things that are intuitively OK break security



  

Hashing
● A hash function is a one-way function that 

changes an arbitrary length input into a 
(usually) fixed length output (the hash or 
digest)

● We care about cryptographic hashes



  

Cryptographic Hashes
● It should be difficult to find the inputs when you only 

know the output

● It should be difficult to find two inputs with the same 
output (a collision)

● Made-up categories:
– Fast Hashes

– Password Hashes



  

“Fast” Hashes
● Variable length of data goes in and a fixed-

length digest comes out.
● e.g. SHA family, Blake3, MD5 (bad)
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Password Hashes
● Called a Key Derivation Function (KDF)

– Used to avoid storing user passwords on websites

– Or user-defined passphrases (disk encryption)

● Designed to hamper brute force attacks
– Accept a per-hash salt

– Usually accept a difficulty

● e.g. Argon2, scrypt, bcrypt



  



  

Aside: Full Disk Encryption (FDE)



  

Aside: dm-crypt+LUKS
● UEFI/BIOS loads Linux kernel
● kernel calls cryptsetup(8)

– Asks for password
– Checks password hash against LUKS header

● Called Key Recovery

– If match, hand over key to dm-crypt

● Then keep booting Linux



  



  



  

Now we can keep a message secret.

How do we prove the message wasn’t modified?



  

Message Authentication Codes
● MACs are like a 

checksum
● Use a secret to 

authenticate a 
message.
– Difficult to forge
– Useless without the 

secret



  

Summary: Symmetric Crypto
● Ciphers: Keep a secret
● Hash: Identify something without storing it
● MAC: Verify authenticity

And now for something completely different



  

Asymmetric Crypto
● Generate a keypair of a public and private key
● Give out public, keep private secret
● You can now:

– Sign
– Encrypt



  

Asymmetric Crypto (cont)
● Things you can do

– De/Encrypt messages
– Sign/Verify messages
– Establish a shared secret between two parties
– Delegate authority (e.g. Web Certificates)
– Use your bank’s website



  

Asymmetric Systems
● Two common ones currently

– RSA
– Elliptic Curves (ECC)

● Post-Quantum coming down the pipe:
– Kyber (KEM)
– Dilithium (Signatures)



  

RSA
● Independently invented in the UK (1973) and USA (1977)
● Pick two very large secret large prime numbers (p & q)
● Calculate public key: N = p * q
● RSA-2048

– len(p) == len(q) == 1024 bits
– N = p*q
– len(N) == 2048 bits
– 256 bytes



  

Elliptic Curve Cryptography (ECC)
● ECC uses point on a curve instead of scalar #s 
● Split into signing + encryption algorithms
● Smaller keys
● Not actually a single system

– You get to pick a curve as well
– Many of these



  

Asymmetric Signing



  



  

Now what?

I can crypto now, right?



  

Internal Threats: Don’t FSCK it up

● Use a key after it “wears” out

● You use the wrong mode/padding

● You don’t verify the recipient’s key is well-formed

● ...And a whole lot more!

People don’t write crypto themselves because it’s 
easy to mess up



  

External Threats: Don’t Get Pwned
● Side Channels

– Power

– Timing

– Acoustic

● Software vulnerabilities

● Gov-mandated backdoor

● A quantum computer breaks funny math



  

Pwned by Quantum Computers?
● Quantum Computing (QC) kind of breaks cryptography

● Asymmetric
– RSA: Broken

– ECC: Even more broken

● Symmetric + Hashes
– Mostly OK

– Grover’s Algorithm: ½’s key sizes



  

Post Quantum Cryptography (PQC)
● PQC is designed to be QC-secure

● Downsides
– Immature algorithms may have flaws

● e.g. SIKE, Rainbow

– Way larger keys

– Way slower than contemporary crypto

● Getting standards now



  

QC Recommendations
● Biggest threat is Harvest now, decrypt later

● Don’t Panic
– Move to the exists in an orderly fashion

– Start migrating to PQC immediately

– Consider hybrid constructions

● Stay up to date
– Keep software up to date for when support is added

– Move to vendors that support PQC if yours don’t



  

Other Recommendations
● I want to wrap an existing protocol

– OpenSSL
– s2n

● I want to write write a new protocol
– See above, or...
– libsodium (or NaCl)



  

Recap
● Basics of common crypto
● Pitfalls of rolling your own

– Throw it away and use someone else’s
– Unless you have a degree in math

● The quantum threat



  

Would you like to know more?
● Cryptopals

● Books

– Real World Cryptography by Wong

– Serious Cryptography by Aumasson
● 2nd edition scheduled for August 2024

– Handbook of Applied Cryptography by Menezes, 
Oorschot, & Vanstone

– Read the spec (AES/Rijndael, SHA, Curve25519, 
ChaCha20)

● Roll your own crypto

– Not Safe for Sanity

Slides:
https://www.camconn.cc/SELF-2024
or scan:

http://www.camconn.cc/SELF-2024
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